251 research outputs found

    Spatial normalization improves the quality of genotype calling for Affymetrix SNP 6.0 arrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microarray measurements are susceptible to a variety of experimental artifacts, some of which give rise to systematic biases that are spatially dependent in a unique way on each chip. It is likely that such artifacts affect many SNP arrays, but the normalization methods used in currently available genotyping algorithms make no attempt at spatial bias correction. Here, we propose an effective single-chip spatial bias removal procedure for Affymetrix 6.0 SNP arrays or platforms with similar design features. This procedure deals with both extreme and subtle biases and is intended to be applied before standard genotype calling algorithms.</p> <p>Results</p> <p>Application of the spatial bias adjustments on HapMap samples resulted in higher genotype call rates with equal or even better accuracy for thousands of SNPs. Consequently the normalization procedure is expected to lead to more meaningful biological inferences and could be valuable for genome-wide SNP analysis.</p> <p>Conclusions</p> <p>Spatial normalization can potentially rescue thousands of SNPs in a genetic study at the small cost of computational time. The approach is implemented in R and available from the authors upon request.</p

    SNPPicker: High quality tag SNP selection across multiple populations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Linkage Disequilibrium (LD) bin-tagging algorithms identify a reduced set of tag SNPs that can capture the genetic variation in a population without genotyping every single SNP. However, existing tag SNP selection algorithms for designing custom genotyping panels do not take into account all platform dependent factors affecting the likelihood of a tag SNP to be successfully genotyped and many of the constraints that can be imposed by the user.</p> <p>Results</p> <p>SNPPicker optimizes the selection of tag SNPs from common bin-tagging programs to design custom genotyping panels. The application uses a multi-step search strategy in combination with a statistical model to maximize the genotyping success of the selected tag SNPs. User preference toward functional SNPs can also be taken into account as secondary criteria. SNPPicker can also optimize tag SNP selection for a panel tagging multiple populations. SNPPicker can optimize custom genotyping panels including all the assay-specific constraints of Illumina's GoldenGate and Infinium assays.</p> <p>Conclusions</p> <p>A new application has been developed to maximize the success of custom multi-population genotyping panels. SNPPicker also takes into account user constraints including options for controlling runtime. Perl Scripts, Java source code and executables are available under an open source license for download at <url>http://mayoresearch.mayo.edu/mayo/research/biostat/software.cfm</url></p

    Targeted alignment and end repair elimination increase alignment and methylation measure accuracy for reduced representation bisulfite sequencing data

    Get PDF
    Background DNA methylation is an important epigenetic modification involved in many biological processes. Reduced representation bisulfite sequencing (RRBS) is a cost-effective method for studying DNA methylation at single base resolution. Although several tools are available for RRBS data processing and analysis, it is not clear which strategy performs the best and there has not been much attention to the contamination issue from artificial cytosines incorporated during the end repair step of library preparation. To address these issues, we describe a new method, Targeted Alignment and Artificial Cytosine Elimination for RRBS (TRACE-RRBS), which aligns bisulfite sequence reads to MSP1 digitally digested reference and specifically removes the end repair cytosines. We compared this approach on a simulated and a real dataset with 7 other RRBS analysis tools and Illumina 450 K microarray platform. Results TRACE-RRBS aligns sequence reads to a small fraction of the genome where RRBS protocol targets on and was demonstrated as the fastest, most sensitive and specific tool for the simulated dataset. For the real dataset, TRACE-RRBS took about the same time as RRBSMAP, a third to a sixth of time needed for BISMARK and NOVOALIGN. TRACE-RRBS aligned more reads uniquely than other tools and achieved the highest correlation with 450 k microarray data. The end repair artificial cytosine removal increased correlation between nearby CpGs and accuracy of methylation quantification. Conclusions TRACE-RRBS is fast and more accurate tool for RRBS data analysis. It is freely available for academic use at http://​bioinformaticsto​ols.​mayo.​edu/​

    GLOSSI: a method to assess the association of genetic loci-sets with complex diseases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The developments of high-throughput genotyping technologies, which enable the simultaneous genotyping of hundreds of thousands of single nucleotide polymorphisms (SNP) have the potential to increase the benefits of genetic epidemiology studies. Although the enhanced resolution of these platforms increases the chance of interrogating functional SNPs that are themselves causative or in linkage disequilibrium with causal SNPs, commonly used single SNP-association approaches suffer from serious multiple hypothesis testing problems and provide limited insights into combinations of loci that may contribute to complex diseases. Drawing inspiration from Gene Set Enrichment Analysis developed for gene expression data, we have developed a method, named GLOSSI (Gene-loci Set Analysis), that integrates prior biological knowledge into the statistical analysis of genotyping data to test the association of a group of SNPs (loci-set) with complex disease phenotypes. The most significant loci-sets can be used to formulate hypotheses from a functional viewpoint that can be validated experimentally.</p> <p>Results</p> <p>In a simulation study, GLOSSI showed sufficient power to detect loci-sets with less than 10% of SNPs having moderate-to-large effect sizes and intermediate minor allele frequency values. When applied to a biological dataset where no single SNP-association was found in a previous study, GLOSSI was able to identify several loci-sets that are significantly related to blood pressure response to an antihypertensive drug.</p> <p>Conclusion</p> <p>GLOSSI is valuable for association of SNPs at multiple genetic loci with complex disease phenotypes. In contrast to methods based on the Kolmogorov-Smirnov statistic, the approach is parametric and only utilizes information from within the interrogated loci-set. It properly accounts for dependency among SNPs and allows the testing of loci-sets of any size.</p

    Quality assessment metrics for whole genome gene expression profiling of paraffin embedded samples

    Get PDF
    BACKGROUND: Formalin fixed, paraffin embedded tissues are most commonly used for routine pathology analysis and for long term tissue preservation in the clinical setting. Many institutions have large archives of Formalin fixed, paraffin embedded tissues that provide a unique opportunity for understanding genomic signatures of disease. However, genome-wide expression profiling of Formalin fixed, paraffin embedded samples have been challenging due to RNA degradation. Because of the significant heterogeneity in tissue quality, normalization and analysis of these data presents particular challenges. The distribution of intensity values from archival tissues are inherently noisy and skewed due to differential sample degradation raising two primary concerns; whether a highly skewed array will unduly influence initial normalization of the data and whether outlier arrays can be reliably identified. FINDINGS: Two simple extensions of common regression diagnostic measures are introduced that measure the stress an array undergoes during normalization and how much a given array deviates from the remaining arrays post-normalization. These metrics are applied to a study involving 1618 formalin-fixed, paraffin-embedded HER2-positive breast cancer samples from the N9831 adjuvant trial processed with Illumina’s cDNA-mediated Annealing Selection extension and Ligation assay. CONCLUSION: Proper assessment of array quality within a research study is crucial for controlling unwanted variability in the data. The metrics proposed in this paper have direct biological interpretations and can be used to identify arrays that should either be removed from analysis all together or down-weighted to reduce their influence in downstream analyses
    • …
    corecore